Designing a polytopic complex vaccine candidate against Gallibacterium anatis: an In-silico study

Authors

  • F. Amini Njafi R & D, Tose Kosar Group, Tehran, Iran
  • M. M. Ranjbar Department of Animal Viral Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
  • N. Motamed Department of Avian Bacterial Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
  • S. Ataei Department of Avian Bacterial Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
  • S. Ataei Kachooei Department of Cellular Molecular Sciences, Faculty of Life Sciences, Kharazmi University, Karaj, Iran
Abstract:

The haemolytic biovar of Gallibacterium anatis (G. anatis) is responsible for urogenital, gastrointestinal, and respiratory diseases in chickens. There are numerous reports on the resistance of G. anatis to antibiotics and recurrence of the disease, which raise concerns about antimicrobial treatment efficiency. Vaccination has been considered as the most feasible procedure of prevention in high risk farms. Subunit vaccines containing immunogenic components can have practical protective value in preventive measures regarding the infection. The present study aimed to introduce a polytopic vaccine candidate based on epitope detection. All registered sequences of four immunogenic proteins, includig Flfa, GTxA, Gab_1309, and Gab_2348 were retrieved and directed for variational analysis. A vaccine isolate was selected for each protein and tested for B-cell epitope mapping using different tools. Furthermore, consensus selected immunogenic regions with special patterns fused together by flexible linkers were integrated into two constructs and checked for the best status of proteasomal cleavage sites, as well as hydropathy plot. Moreover, back translations, along with codon optimization were performed, and then some tags were added to the constructs. The selected consensus B-cell immunogenic epitopes were for 12656: AA114-181, 7990: AA114-181, Avicor: AA42-77, 134-197, and IPDH: 61-155 for Flfa protein, AA185-235, AA372-457, and AA807-941 for GtxA-N, AA260-305, AA340-400, and AA110-146 for Gab-1309, and AA125-AA175 for Gab-2348. Two suitable patterns of attachment were selected from the different fusion patterns of epitopes in B-cell polytopic vaccinal constructs. Finally, the examination of these constructs showed their effect and efficacy for immune system stimulation. Based on bioinformatics results, these immunogens could be utilized as potential candidates to develop polytopic protective vaccines and design diagnostic kits.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

In silico prediction of Gallibacterium anatis pan-immunogens

The Gram-negative bacterium Gallibacterium anatis is a major cause of salpingitis and peritonitis in commercial egg-layers, leading to reduced egg production and increased mortality. Unfortunately, widespread multidrug resistance and antigenic diversity makes it difficult to control infections and novel prevention strategies are urgently needed. In this study, a pan-genomic reverse vaccinology ...

full text

Structure Evaluation of IroN for Designing a Vaccine against Escherichia Coli, an In Silico Approach

Introduction: Some strains of Escherichia Coli, including intestinal pathogenic strains, commensal strains, and extra intestinal pathogenic E. coli (ExPEC) have a significant impact on human health status. A standard vaccine designed based on conserved epitopes can stimulate a protective immune response against these pathogens. Additionally, enhanced expression at the infection site as a pathog...

full text

Gallibacterium anatis bacteremia in a human.

We describe the first case of bacteremia due to Gallibacterium anatis. The patient, a 26-year-old woman, developed bacteremia and diarrhea. The origin of infection was possibly due to a diet contaminated by G. anatis in this highly immunocompromised patient.

full text

Natural transformation of Gallibacterium anatis.

Gallibacterium anatis is a pathogen of poultry. Very little is known about its genetics and pathogenesis. To enable the study of gene function in G. anatis, we have established methods for transformation and targeted mutagenesis. The genus Gallibacterium belongs to the Pasteurellaceae, a group with several naturally transformable members, including Haemophilus influenzae. Bioinformatics analysi...

full text

OprF and OprL Conjugate as Vaccine Candidates against Pseudomonas aeruginosa; an in Silico Study

Introduction: Vaccine studies against Pseudomonas aeruginosa have often focused on outer membrane proteins (OPRs) due to their potent stimulation of the immune response. Using major outer membrane proteins of cell walls (mOMPs) of P. aeruginosa and other Gram-negative bacteria actively stimulate the immune system without any toxic side effects. Moreover, these antigens show immunological cross-...

full text

Designing a Construct of Chimeric Multi-Epitopes Protein for Contraceptive Vaccine in Mice: An Immunoinformatics and In Silico Study

Background: Contraceptive vaccines (CVs) can be used as a valuable and alternative method for the prevention of gestation in humans and animals. These vaccines can have several targets, such as superficial sperm proteins. Vaccines based on sperm antigens are quite efficacious to create a contraceptive effect. However, multi-epitope vaccines are more effective in stimulating the immune system an...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 74  issue 1

pages  7- 20

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023